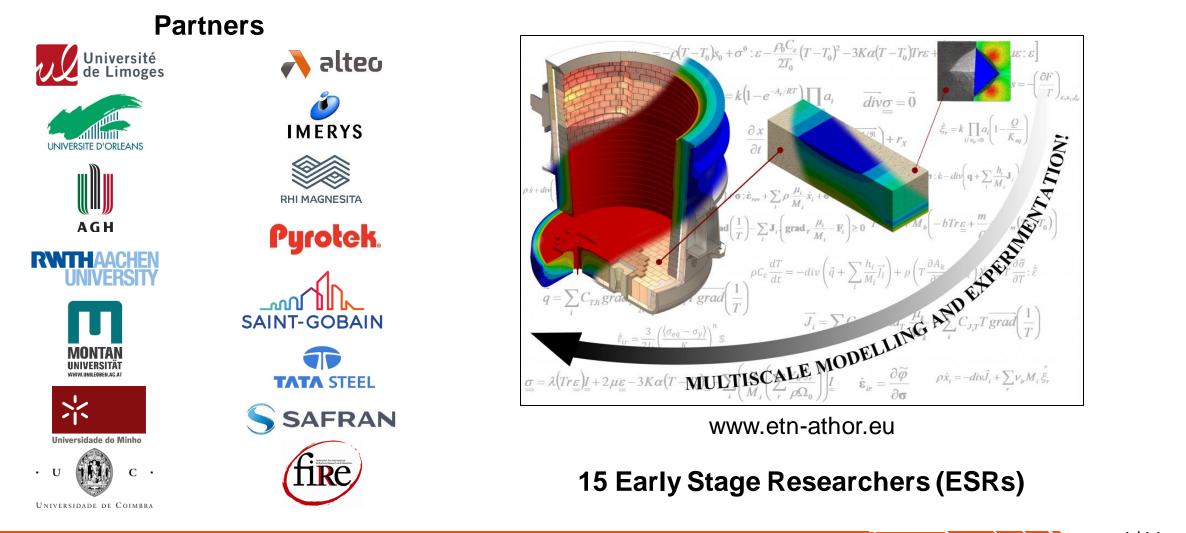


Creep Characterization of Refractory Materials at High Temperatures Using the Integrated Digital Image Correlation Technique

Lucas Teixeira – University of Orléans

Jean Gillibert Eric Blond Thomas Sayet


lucas.breder-teixeira@univ-orleans.fr

Lucas Teixeira, Univ. of Orléans, UNITECR 2019, October 16th 2019

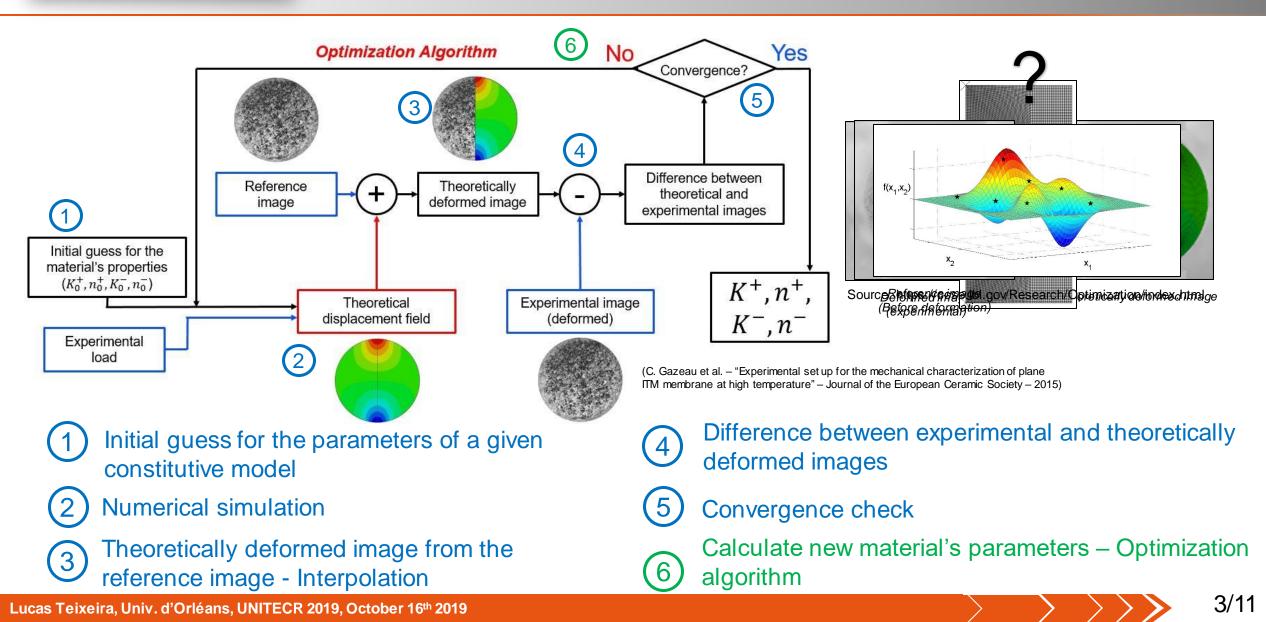
ATHOR Project

ATHOR – Advanced THermomechanical multiscale mOdelling of Refractory materials

Context – Refractories and the Steel Ladle

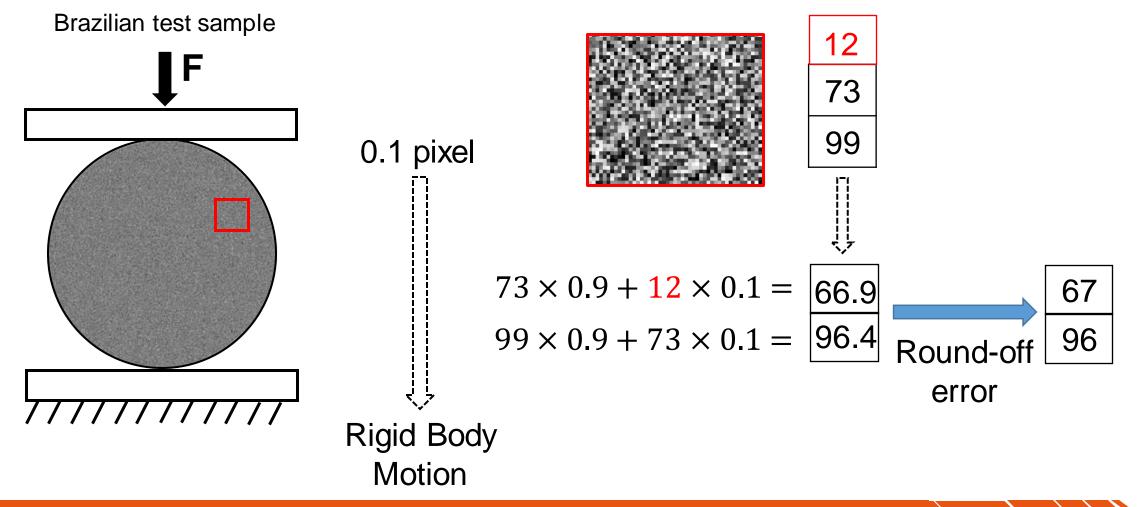
To predict the suitability of a refractory lining to a given production process, it's necessary to know its mechanical behavior.

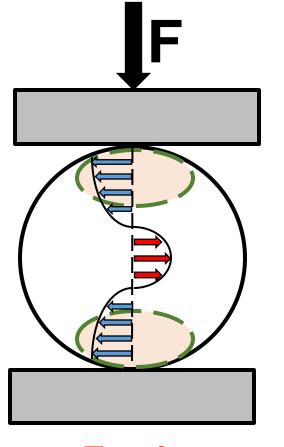
In general, refractories at high temperatures present a viscoplastic damageable behavior.



The characterization and modeling of refractory linings is still a scientific challenge.

The aim of this work is to propose a characterization setup based on the I-DIC technique and Brazilian tests for the identification of asymmetric creep constitutive models parameters


I-DIC technique – Full field measurements


I-DIC technique – Full field measurements

Interpolation of gray levels

A note on the Brazilian test

→ Tension
→ Compression
- - - Shear

- Compression, tension and shear loads in the sample at the same time
- Possibility to identify all the material's parameters at the same time
- Reduced number of tests when compared to unidimensional tensile and compressive tests

Asymmetric secondary creep model

Norton-Bailey creep law

$$\dot{\boldsymbol{\varepsilon}}^{p} = \frac{3}{2} \frac{\boldsymbol{s}}{\sigma_{eq}} \left(\frac{\langle \sigma_{eq} - \sigma_{y} \rangle}{K} \right)^{n}$$

Split of the stress tensor

$$\boldsymbol{\sigma} = \langle \boldsymbol{\sigma} \rangle - \langle - \boldsymbol{\sigma} \rangle$$

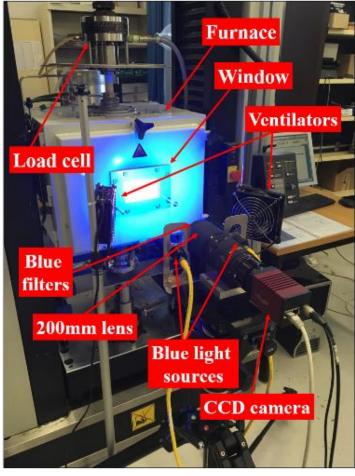
Asymmetric viscoplastic strain rate

$$\dot{\boldsymbol{\varepsilon}}^{p} = \frac{3}{2} \frac{\boldsymbol{s}^{+}}{\sigma_{eq}^{+}} \left(\frac{\langle \sigma_{eq}^{+} - \sigma_{y}^{+} \rangle}{\boldsymbol{K}^{+}} \right)^{\boldsymbol{n}^{+}} - \frac{3}{2} \frac{\boldsymbol{s}^{-}}{\sigma_{eq}^{-}} \left(\frac{\langle \sigma_{eq}^{-} - \sigma_{y}^{-} \rangle}{\boldsymbol{K}^{-}} \right)^{\boldsymbol{n}^{-}}$$

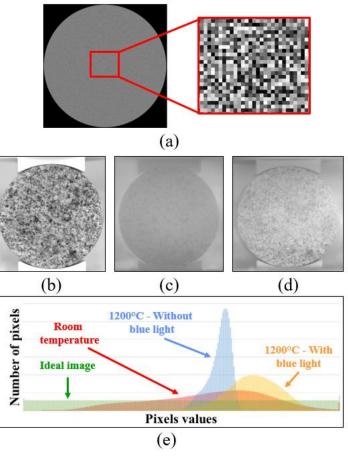
where:

- $s \longrightarrow$ Deviatoric stress tensor
- $\sigma_{eq} \longrightarrow$ Von Mises equivalent stress
- $\sigma_y \longrightarrow$ Yield stress

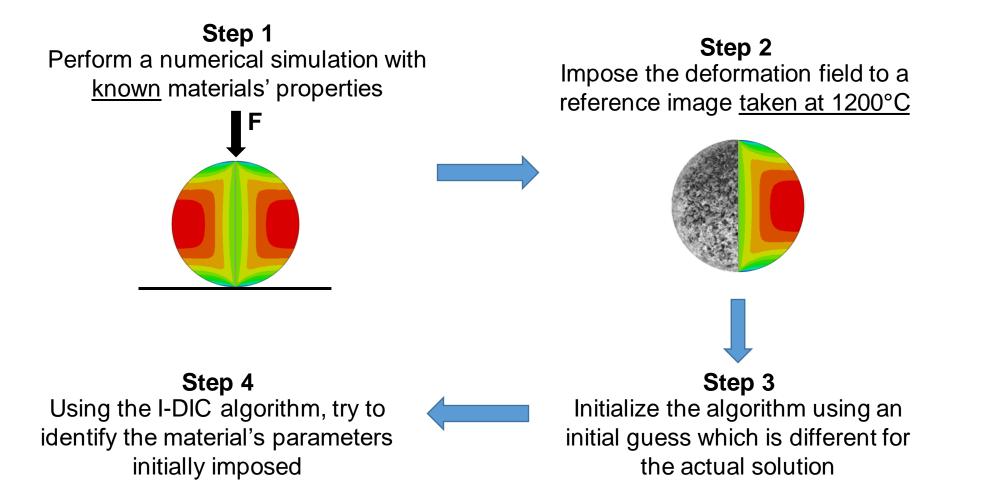
- $K, n \longrightarrow$ Material's properties
- +/- -- Indexes related to tension and compression behavior


Lucas Teixeira, Univ. d'Orléans, UNITECR 2019, October 16th 2019

(E. Blond et al. - "Modelling of high temperature


asymmetric creep behavior of ceramics" – Journal of the European Ceramic Society – 2005)

Experimental setup


High temperature experimental setup

Brazilian test samples used with I-DIC. (a) Virtual image. (b) Room temperature. (c) 1200° C without using the blue lights. (d) 1200° C using the blue lights. (e) Images' histograms.

Virtually deformed images were used to test the suitability of the I-DIC technique in the identification of asymmetric creep parameters

$$\dot{\boldsymbol{\varepsilon}}^{p} = \frac{3}{2} \frac{\boldsymbol{s}^{+}}{\sigma_{eq}^{+}} \left(\frac{\langle \sigma_{eq}^{+} - \sigma_{y}^{+} \rangle}{\boldsymbol{K}^{+}} \right)^{n^{+}} - \frac{3}{2} \frac{\boldsymbol{s}^{-}}{\sigma_{eq}^{-}} \left(\frac{\langle \sigma_{eq}^{-} - \sigma_{y}^{-} \rangle}{\boldsymbol{K}^{-}} \right)^{n^{+}}$$

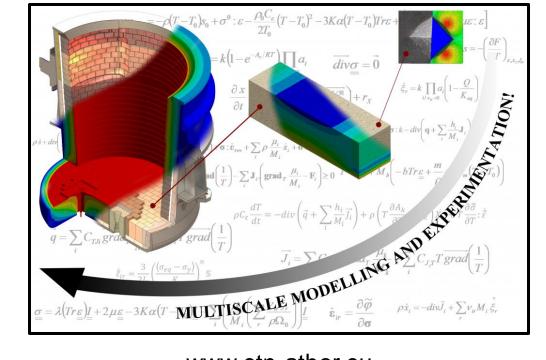
Reference values for the material's properties

<i>K</i> ⁺	5773.5 MPa s ^{1/} n
n^+	2
<i>K</i> ⁻	$1 \times 10^6 MPa \ s^{1/n}$
n ⁻	1.5

Use of a Genetic algorithm to perform the optimization

	Solutior	n 1		Solution 2		Solution 3		
	Value	Error		Value	Error		Value	
<i>K</i> ⁺	5127.6	-11.19%	K^+	5543.3	-3.99%	<i>K</i> ⁺	5264.7	
n^+	2.01	0.27%	n^+	1.99	-0.46%	n^+	1.99	
K^{-}	9.71×10^{5}	-2.91%	K	1.25×10^{6}	-24.97%	<i>K</i> ⁻	1.08×10^{6}	
n^{-}	1.51	0.71%	n^{-}	1.48	-1.10%	n^{-}	1.51	

Conclusions



- Refractory materials present complex mechanical behavior, and it's important to consider viscoplastic strains for the prediction of the lining operational time
- Traditional unidimensional creep tests have showed to be an interesting way to characterize refractory materials, but many tests are required
- The combination of I-DIC with Brazilian tests was proposed to reduce the number of tests required, as well as to create a close relation between the identification process and the numerical models
- I-DIC was shown to be a suitable technique to be applied to refractories at high temperatures

- Perform Brazilian tests at high temperatures and use the I-DIC technique to identify the creep parameters – On going
- Compare the identification results with the ones obtained using unidimensional tension and compression tests (already performed in cooperation with Montanuniversität Leoben – Austria)
- Validation tests Four-points bending
- Test the suitability of different creep laws for the materials being studied:
 - Primary creep law with isotropic hardening
 - Primary creep law with kinematic hardening creep transients

www.etn-athor.eu

Thank you for your attention

lucas.breder-teixeira@univ-orleans.fr

www.etn-athor.eu

Acknowledgments: this work was supported by the funding scheme of the European Commission, Marie Skłodowska-Curie Actions Innovative Training Networks in the frame of the project ATHOR - Advanced THermomechanical multiscale modelling of Refractory linings 764987 Grant.